Recent and new results on octonionic Bergman and Szegö kernels

نویسندگان

چکیده

Very recently one has started to study Bergman and Szegö kernels in the setting of octonionic monogenic functions. In particular, explicit formulas for kernel unit ball right half-space as well a formula have been established. this paper, we extend line investigation by developing strip domains form S : = { z ? ???? | 0 < ? ( ) d } from which derive limit argument considering ? ? half-space. Additionally, set up such relate both with each other. fact, these functions can be expressed terms onefold periodic generalizations cosecant function cotangent function, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta Functions and Szegö Kernels

We study relations between two fundamental constructions associated to vector bundles on a smooth complex projective curve: the theta function (a section of a line bundle on the moduli space of vector bundles) and the Szegö kernel (a section of a vector bundle on the square of the curve). Two types of relations are demonstrated. First, we establish a higher–rank version of the prime form, descr...

متن کامل

Weighted Bergman kernels on orbifolds

We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.

متن کامل

Moment Maps and Equivariant Szegö Kernels

Let M be a connected n-dimensional complex projective manifold and consider an Hermitian ample holomorphic line bundle (L, hL) on M . Suppose that the unique compatible covariant derivative ∇L on L has curvature −2πiΩ, where Ω is a Kähler form. Let G be a compact connected semisimple Lie group and μ : G×M → M a holomorphic Hamiltonian action on (M,Ω). Let g be the Lie algebra of G, and denote b...

متن کامل

Weighted Bergman Kernels and Quantization

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2021

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.7316